
Publicações de Felipe Crasto de Lima
Araújo, A. L.; de Lima, F. Crasto; Lewenkopf, C. H.; Fazzio, Adalberto Design of spin-orbital-textures in ferromagnetic/topological insulator interfaces Journal Article Em: 2023. Resumo | Links | BibTeX | Tags: Pezo, Armando; de Lima, F. Crasto; Fazzio, Adalberto Electronic and spin transport in Bismuthene with magnetic impurities Working paper 2023. Resumo | Links | BibTeX | Tags: de Lima, F. Crasto; Focassio, B; Miwa, Roberto H.; Fazzio, Adalberto Topological insulating phase arising in transition metal dichalcogenide alloy Journal Article Em: 2D Materials, vol. 10, não 3, pp. 035001, 2023. Resumo | Links | BibTeX | Tags: Silvestre, G. H.; de Lima, F. Crasto; Bernardes, J. S.; Fazzio, Adalberto; Miwa, Roberto H. Nanoscale structural and electronic properties of cellulose/graphene interfaces Journal Article Em: Phys. Chem. Chem. Phys., vol. 25, não 2, pp. 1161–1168, 2023, ISSN: 1463-9084. Resumo | Links | BibTeX | Tags: General Physics and Astronomy, Physical and Theoretical Chemistry Scopel, Wanderlã L.; de Lima, F. Crasto; Souza, Pedro H.; Padilha, José E.; Miwa, Roberto H. Bridging Borophene and Metal Surfaces: Structural, Electronic, and Electron Transport Properties Journal Article Em: The Journal of Physical Chemistry C, vol. 127, não 35, pp. 17556-17566, 2023. Resumo | Links | BibTeX | Tags: Okazaki, Anderson K.; de Oliveira, Rafael Furlan; Freire, Rafael Luiz Heleno; Fazzio, Adalberto; de Lima, F. Crasto Uncovering the Structural Evolution of Arsenene on SiC Substrate Journal Article Em: The Journal of Physical Chemistry C, vol. 127, não 16, pp. 7894-7899, 2023. Resumo | Links | BibTeX | Tags: Freire, R. L. H.; de Lima, F. Crasto; Fazzio, Adalberto Substrate suppression of oxidation process in pnictogen monolayers Working paper 2023. Resumo | Links | BibTeX | Tags: Materials Science2023
@article{araújo2023design,
title = {Design of spin-orbital-textures in ferromagnetic/topological insulator interfaces},
author = {A. L. Araújo and F. Crasto de Lima and C. H. Lewenkopf and Adalberto Fazzio},
url = {https://arxiv.org/abs/2311.11084},
doi = { https://doi.org/10.48550/arXiv.2311.11084},
year = {2023},
date = {2023-11-18},
urldate = {2023-01-01},
abstract = {Spin-orbital textures in topological insulators due to the spin locking with the electron momentum, play an important role in spintronic phenomena that arise from the interplay between charge and spin degrees of freedom. We have explored interfaces between a ferromagnetic system (CrI3) and a topological insulator (Bi2Se3) that allow the manipulation of spin-orbital textures. Within an {it ab initio} approach we have extracted the spin-orbital-textures dependence of experimentally achievable interface designs. The presence of the ferromagnetic system introduces anisotropic transport of the electronic spin and charge. From a parameterized Hamiltonian model we capture the anisotropic backscattering behavior, showing its extension to other ferromagnetic/topological insulator interfaces. We verified that the van der Waals TI/MI interface is an excellent platform for controlling the spin degree of freedom arising from topological states, providing a rich family of unconventional spin texture configurations.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
@workingpaper{pezo2023electronic,
title = {Electronic and spin transport in Bismuthene with magnetic impurities},
author = {Armando Pezo and F. Crasto de Lima and Adalberto Fazzio},
url = {https://arxiv.org/abs/2309.07328},
doi = { https://doi.org/10.48550/arXiv.2309.07328},
year = {2023},
date = {2023-09-13},
urldate = {2023-01-01},
abstract = {Topological insulators have remained as candidates for future electronic devices since their first experimental realization in the past decade. The existence of topologically protected edge states could be exploited to generate a robust platform and develop quantum computers. In this work we explore the role of magnetic impurities in the transport properties of topological insulators, in particular, we study the effect on the edge states conductivity. By means of realistic ab initio calculations we simulate the interaction between magnetic adatoms and topological insulators, furthermore, our main goal is to obtain the transport properties for large samples as it would be possible to localize edge states at large scales.},
keywords = {},
pubstate = {published},
tppubtype = {workingpaper}
}
@article{CrastodeLima_2023,
title = {Topological insulating phase arising in transition metal dichalcogenide alloy},
author = {F. Crasto de Lima and B Focassio and Roberto H. Miwa and Adalberto Fazzio},
url = {https://dx.doi.org/10.1088/2053-1583/acc670},
doi = {10.1088/2053-1583/acc670},
year = {2023},
date = {2023-04-01},
urldate = {2023-04-01},
journal = {2D Materials},
volume = {10},
number = {3},
pages = {035001},
publisher = {IOP Publishing},
abstract = {Transition metal dichalcogenides have been the subject of numerous studies addressing technological applications and fundamental issues. Single-layer PtSe2 is a semiconductor with a trivial bandgap, in contrast, its counterpart with of Se atoms substituted by Hg, Pt2HgSe3 (jacutingaite, a naturally occurring mineral) is a 2D topological insulator with a large bandgap. Based on ab-initio calculations, we investigate the energetic stability, and the topological transition in Pt(Hg x Se)2 as a function of alloy concentration, and the distribution of Hg atoms embedded in the PtSe2 host. Our findings reveal the dependence of the topological phase with respect to the alloy concentration and robustness with respect to the distribution of Hg. Through a combination of our ab-initio results and a defect wave function percolation model, we estimate the random alloy concentration threshold for the topological transition to be only . Our results expand the possible search for non-trivial topological phases in random alloy systems.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
@article{Silvestre2023,
title = {Nanoscale structural and electronic properties of cellulose/graphene interfaces},
author = {G. H. Silvestre and F. Crasto de Lima and J. S. Bernardes and Adalberto Fazzio and Roberto H. Miwa},
doi = {10.1039/d2cp04146d},
issn = {1463-9084},
year = {2023},
date = {2023-01-04},
urldate = {2023-01-04},
journal = {Phys. Chem. Chem. Phys.},
volume = {25},
number = {2},
pages = {1161--1168},
publisher = {Royal Society of Chemistry (RSC)},
abstract = {
keywords = {General Physics and Astronomy, Physical and Theoretical Chemistry},
pubstate = {published},
tppubtype = {article}
}
@article{doi:10.1021/acs.jpcc.3c03123,
title = {Bridging Borophene and Metal Surfaces: Structural, Electronic, and Electron Transport Properties},
author = {Wanderlã L. Scopel and F. Crasto de Lima and Pedro H. Souza and José E. Padilha and Roberto H. Miwa},
url = {https://doi.org/10.1021/acs.jpcc.3c03123},
doi = {10.1021/acs.jpcc.3c03123},
year = {2023},
date = {2023-01-01},
journal = {The Journal of Physical Chemistry C},
volume = {127},
number = {35},
pages = {17556-17566},
abstract = {Currently, solid interfaces composed of two-dimensional materials (2D) in contact with metal surfaces (m-surf) have been the subject of intense research, where the borophene bilayer (BBL) has been considered a prominent material for the development of electronic devices based on 2D platforms. In this work, we present a theoretical study of the energetic, structural, and electronic properties of the BBL/m-surf interface, with m-surf = Ag(111), Au(111), and Al(111) surfaces, and the electronic transport properties of BBL channels connected to the BBL/m-surf top contacts. We find that the BBL becomes metallized due to hybridization with the metal surface states, resulting in Ohmic contacts between BBL and m-surf. However, the projected wavefunctions indicate that the inner and top-most boron layers have a weaker interaction with the m-surf, thus retaining their semiconducting character. The net charge transfers reveal that BBL has become n-type (p-type) doped for m-surf = Ag and Al (= Au). A thorough structural characterization of the BBL/m-surf interface, using a series of simulations of X-ray photoelectron spectra, shows that the formation of the BBL/m-surf interface is characterized by a red shift of the B-1s spectra. Further electronic transport results revealed the emergence of a Schottky barrier between 0.1 and 0.2 eV between the BBL/m-surf contact and the BBL channels. We believe that our findings are timely, bringing important contributions to the applicability of BBLs for developing 2D electronic devices.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
@article{doi:10.1021/acs.jpcc.3c00938,
title = {Uncovering the Structural Evolution of Arsenene on SiC Substrate},
author = {Anderson K. Okazaki and Rafael Furlan de Oliveira and Rafael Luiz Heleno Freire and Adalberto Fazzio and F. Crasto de Lima},
url = {https://doi.org/10.1021/acs.jpcc.3c00938},
doi = {10.1021/acs.jpcc.3c00938},
year = {2023},
date = {2023-01-01},
urldate = {2023-01-01},
journal = {The Journal of Physical Chemistry C},
volume = {127},
number = {16},
pages = {7894-7899},
abstract = {Two-dimensional arsenic allotropes have been grown on metallic surfaces, while topological properties have been theoretically described on strained structures. Here, we experimentally grow arsenene by molecular beam epitaxy over the insulating SiC substrate. The arsenene presents a flat structure with a strain field that follows the SiC surface periodicity. Our ab initio simulations, based on the density functional theory, corroborate the experimental observation. The strained structure presents a new arsenene allotrope with a triangular structure, rather than the honeycomb previously predicted for other pnictogens. This strained structure presents a Peierls-like transition leading to an indirect gap semiconducting behavior.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
@workingpaper{freire2023substrate,
title = {Substrate suppression of oxidation process in pnictogen monolayers},
author = {R. L. H. Freire and F. Crasto de Lima and Adalberto Fazzio},
url = {https://arxiv.org/abs/2307.00138},
doi = {10.48550/arXiv.2307.00138},
year = {2023},
date = {2023-01-01},
urldate = {2023-01-01},
abstract = {2D materials present an interesting platform for device designs. However, oxidation can drastically change the system's properties, which need to be accounted for. Through {it ab initio} calculations, we investigated freestanding and SiC-supported As, Sb, and Bi mono-elemental layers. The oxidation process occurs through an O2 spin-state transition, accounted for within the Landau-Zener transition. Additionally, we have investigated the oxidation barriers and the role of spin-orbit coupling. Our calculations pointed out that the presence of SiC substrate reduces the oxidation time scale compared to a freestanding monolayer. We have extracted the energy barrier transition, compatible with our spin-transition analysis. Besides, spin-orbit coupling is relevant to the oxidation mechanisms and alters time scales. The energy barriers decrease as the pnictogen changes from As to Sb to Bi for the freestanding systems, while for SiC-supported, they increase across the pnictogen family. Our computed energy barriers confirm the enhanced robustness against oxidation for the SiC-supported systems.},
keywords = {Materials Science},
pubstate = {published},
tppubtype = {workingpaper}
}
Orientados e Supervisionados por Felipe Crasto de Lima

Marina Barim do Nascimento
Vínculo: Iniciação Científica
Instituição: Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)
Laboratório: Ilum – Escola de Ciência
Projeto: Defeitos em dicalcogenetos de metais de transição. (CNPq)