
Publicações de Alexandre Reily Rocha
Gomes-Filho, Márcio S.; Torres, Alberto; Rocha, Alexandre Reily; Pedroza, Luana S. Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid Water Journal Article Em: The Journal of Physical Chemistry B, vol. 127, não 6, pp. 1422-1428, 2023, (PMID: 36730848). Resumo | Links | BibTeX | Tags: Padilha, Antonio Claudio Michejevs; Rocha, Alexandre Reily; Dalpian, Gustavo M. 17 – Ordered vacancy compounds: the case of the Mangéli phases of TiO2 Book Section Em: Kumar, Vijay; Som, Sudipta; Sharma, Vishal; Swart, Hendrik C. (Ed.): Metal Oxide Defects, pp. 533-565, Elsevier, 2023, ISBN: 978-0-323-85588-4. Resumo | Links | BibTeX | Tags: Computational simulation, Density functional theory, DFT, Magnéli phases, Memristive devices, Memristor, Titanium oxide Amorim, Felippe P.; Torres, Alberto; Villegas, Cesar E. P.; Rocha, Alexandre Reily Gate voltage enhances the thermoelectric transport of quantum dots in graphene nanoribbons Journal Article Em: Computational Materials Science, vol. 227, pp. 112207, 2023, ISSN: 0927-0256. Resumo | Links | BibTeX | Tags: 7-14-7 AGNR, Gate voltage enhances, Quantum dots in graphene, Thermoelectric transport2023
@article{doi:10.1021/acs.jpcb.2c09059,
title = {Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid Water},
author = {Márcio S. Gomes-Filho and Alberto Torres and Alexandre Reily Rocha and Luana S. Pedroza},
url = {https://doi.org/10.1021/acs.jpcb.2c09059},
doi = {10.1021/acs.jpcb.2c09059},
year = {2023},
date = {2023-01-01},
journal = {The Journal of Physical Chemistry B},
volume = {127},
number = {6},
pages = {1422-1428},
abstract = {Molecular dynamics simulations have been used in different scientific fields to investigate a broad range of physical systems. However, the accuracy of calculation is based on the model considered to describe the atomic interactions. In particular, ab initio molecular dynamics (AIMD) has the accuracy of density functional theory (DFT) and thus is limited to small systems and a relatively short simulation time. In this scenario, Neural Network Force Fields (NNFFs) have an important role, since they provide a way to circumvent these caveats. In this work, we investigate NNFFs designed at the level of DFT to describe liquid water, focusing on the size and quality of the training data set considered. We show that structural properties are less dependent on the size of the training data set compared to dynamical ones (such as the diffusion coefficient), and a good sampling (selecting data reference for the training process) can lead to a small sample with good precision.},
note = {PMID: 36730848},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
@incollection{MICHEJEVSPADILHA2023533,
title = {17 - Ordered vacancy compounds: the case of the Mangéli phases of TiO2},
author = {Antonio Claudio Michejevs Padilha and Alexandre Reily Rocha and Gustavo M. Dalpian},
editor = {Vijay Kumar and Sudipta Som and Vishal Sharma and Hendrik C. Swart},
url = {https://www.sciencedirect.com/science/article/pii/B9780323855884000143},
doi = {https://doi.org/10.1016/B978-0-323-85588-4.00014-3},
isbn = {978-0-323-85588-4},
year = {2023},
date = {2023-01-01},
urldate = {2023-01-01},
booktitle = {Metal Oxide Defects},
pages = {533-565},
publisher = {Elsevier},
series = {Metal Oxides},
abstract = {Defects typically appear in materials in very limited quantities, usually of the order of 1016–1019/cm3. In some cases, however, these defects can be observed in a much larger concentration, enough to change the stoichiometry of the parent compound and even change their crystal structure. An important class of these materials is the ordered vacancy compounds, first proposed for CdIn2Se4. Other compounds, such as hybrid perovskites, can also present ordered vacancy compounds, such as Cs2SnI6, derived from CsSnI3. In this chapter, we will discuss ordered vacancy compounds derived from the transition metal oxide compound TiO2. These are known as the Magnéli phases of TiO2 and can be constructed by removing oxygen atoms from the host lattice. There are several different polymorphs that can be created by changing the quantity of oxygen vacancies, including Ti2O3, Ti3O5, and Ti4O7 (based on the formula TinO2n−1). We will discuss the structural determination of these materials that can be created by sliding planes from the rutile TiO2 structure. Also, the electronic structure of these compounds is characteristic of intermediate band materials and can be directly correlated to the properties of oxygen vacancies in TiO2. Lastly, we will discuss the potential applications of this kind of materials that can include memristors and batteries.},
keywords = {Computational simulation, Density functional theory, DFT, Magnéli phases, Memristive devices, Memristor, Titanium oxide},
pubstate = {published},
tppubtype = {incollection}
}
@article{AMORIM2023112207,
title = {Gate voltage enhances the thermoelectric transport of quantum dots in graphene nanoribbons},
author = {Felippe P. Amorim and Alberto Torres and Cesar E. P. Villegas and Alexandre Reily Rocha},
url = {https://www.sciencedirect.com/science/article/pii/S092702562300201X},
doi = {https://doi.org/10.1016/j.commatsci.2023.112207},
issn = {0927-0256},
year = {2023},
date = {2023-01-01},
urldate = {2023-01-01},
journal = {Computational Materials Science},
volume = {227},
pages = {112207},
abstract = {Chemically derived graphene nanoribbons and quantum dots are unique nanostructures that offer more possibilities than 2D and 3D systems to tune their electronic properties due to the enhanced quantum confinement effects. This feature make them potential candidates for many technological applications, including thermoelectrics. In this work, we combined density functional theory calculations with the non-equilibrium Green’s function formalism to investigate the electronic and thermoelectric properties of recently synthesized quantum dots in graphene nanoribbons under the presence of an applied gate voltage, and for different temperatures. We find that the electronic states at the band edge are highly localized in the inner region of the quantum dot, and can be lifted to higher energies by applying a gate voltage, which subsequently enhances figure of merit. Moreover, at zero gate voltage and room temperature, we estimate the lower bound for ZT to be approximately 0.25. Interestingly, this lower bound can exceed unity by smoothly increasing the gate voltage for values above 6 V. The overall results regarding the enhancement of ZT suggest that quantum dots in graphene nanoribbons would be promising candidates for thermoelectric applications.},
keywords = {7-14-7 AGNR, Gate voltage enhances, Quantum dots in graphene, Thermoelectric transport},
pubstate = {published},
tppubtype = {article}
}