Padilha, Antonio Claudio Michejevs; Rocha, Alexandre Reily; Dalpian, Gustavo M. 17 – Ordered vacancy compounds: the case of the Mangéli phases of TiO2 Book Section Em: Kumar, Vijay; Som, Sudipta; Sharma, Vishal; Swart, Hendrik C. (Ed.): Metal Oxide Defects, pp. 533-565, Elsevier, 2023, ISBN: 978-0-323-85588-4. Resumo | Links | BibTeX | Tags: Computational simulation, Density functional theory, DFT, Magnéli phases, Memristive devices, Memristor, Titanium oxide Rodrigues, Debora C. M.; Amorim, Rodrigo G.; Latgé, A.; Venezuela, Pedro Improving the sensitivity of graphyne nanosensor by transition metal doping Journal Article Em: Carbon, vol. 212, pp. 118087, 2023, ISSN: 0008-6223. Resumo | Links | BibTeX | Tags: DFT, Electronic transport, Gas sensor, Graphyne, Transition metal Portugal, Guilherme Ribeiro; Ronchi, Rodrigo Mantovani; Santos, Sydney Ferreira; Arantes, Jeverson Teodoro Composition-dependent photocatalytic activity and high-mobility carrier gas in NaTaO3/BaBiO3 heterojunctions Journal Article Em: Surfaces and Interfaces, vol. 36, pp. 102486, 2023, ISSN: 2468-0230. Resumo | Links | BibTeX | Tags: BaBiO, DFT, Heterojunction, Interface, NaTaO, Perovskite Silveira, Jefferson E.; Souza, Aramille S.; Pansini, Fernando N. N.; Ribeiro, Alyson R.; Scopel, Wanderlã L.; Zazo, Juan A.; Casas, Jose A.; Paz, Wendel S. A comprehensive study of the reduction of nitrate on natural FeTiO3: Photocatalysis and DFT calculations Journal Article Em: Separation and Purification Technology, vol. 306, pp. 122570, 2023, ISSN: 1383-5866. Resumo | Links | BibTeX | Tags: DFT, Ilmenite, Nitrate, Photoreduction Ambrozio, Alan R.; Lopes, Thierry R.; Cipriano, Daniel F.; Souza, Fábio A. L.; Scopel, Wanderlã L.; Freitas, Jair C. C. Combined experimental and computational 1H NMR study of water adsorption onto graphenic materials Journal Article Em: Journal of Magnetic Resonance Open, vol. 14-15, pp. 100091, 2023, ISSN: 2666-4410. Resumo | Links | BibTeX | Tags: DFT, Graphenic materials, H NMR, Water adsorption@incollection{MICHEJEVSPADILHA2023533,
title = {17 - Ordered vacancy compounds: the case of the Mangéli phases of TiO2},
author = {Antonio Claudio Michejevs Padilha and Alexandre Reily Rocha and Gustavo M. Dalpian},
editor = {Vijay Kumar and Sudipta Som and Vishal Sharma and Hendrik C. Swart},
url = {https://www.sciencedirect.com/science/article/pii/B9780323855884000143},
doi = {https://doi.org/10.1016/B978-0-323-85588-4.00014-3},
isbn = {978-0-323-85588-4},
year = {2023},
date = {2023-01-01},
urldate = {2023-01-01},
booktitle = {Metal Oxide Defects},
pages = {533-565},
publisher = {Elsevier},
series = {Metal Oxides},
abstract = {Defects typically appear in materials in very limited quantities, usually of the order of 1016–1019/cm3. In some cases, however, these defects can be observed in a much larger concentration, enough to change the stoichiometry of the parent compound and even change their crystal structure. An important class of these materials is the ordered vacancy compounds, first proposed for CdIn2Se4. Other compounds, such as hybrid perovskites, can also present ordered vacancy compounds, such as Cs2SnI6, derived from CsSnI3. In this chapter, we will discuss ordered vacancy compounds derived from the transition metal oxide compound TiO2. These are known as the Magnéli phases of TiO2 and can be constructed by removing oxygen atoms from the host lattice. There are several different polymorphs that can be created by changing the quantity of oxygen vacancies, including Ti2O3, Ti3O5, and Ti4O7 (based on the formula TinO2n−1). We will discuss the structural determination of these materials that can be created by sliding planes from the rutile TiO2 structure. Also, the electronic structure of these compounds is characteristic of intermediate band materials and can be directly correlated to the properties of oxygen vacancies in TiO2. Lastly, we will discuss the potential applications of this kind of materials that can include memristors and batteries.},
keywords = {Computational simulation, Density functional theory, DFT, Magnéli phases, Memristive devices, Memristor, Titanium oxide},
pubstate = {published},
tppubtype = {incollection}
}
@article{RODRIGUES2023118087,
title = {Improving the sensitivity of graphyne nanosensor by transition metal doping},
author = {Debora C. M. Rodrigues and Rodrigo G. Amorim and A. Latgé and Pedro Venezuela},
url = {https://www.sciencedirect.com/science/article/pii/S0008622323003329},
doi = {https://doi.org/10.1016/j.carbon.2023.118087},
issn = {0008-6223},
year = {2023},
date = {2023-01-01},
journal = {Carbon},
volume = {212},
pages = {118087},
abstract = {The concern with air quality and safety urges for design and development of new gas sensors. Graphyne presents comparable electronic mobility and mechanical properties to graphene, with the advantage of naturally allowing single-atom dispersion into acetylenic pores. Therefore, we investigate the detection ability of transition metal (TM: Fe and Ni) doped graphyne (Gy) toward CO, NO, NO2, and CO2 gas molecules. Our aim is to engineer the electronic characteristics and further improve the sensing properties. We model the sensing device using TM-doped Gy nanoribbons (TM-GyNR) using density functional theory combined with non-equilibrium Green’s functions. Most of the gases presented chemical adsorption on the TM-GyNR, with slightly weaker interaction for gas/NiGyNR systems than gas/FeGyNR. These differences produced recovery times compatible with room temperature detectors for CO and NO (NiGyNR) and CO2 (FeGyNR) gases. We obtain gas sensitivity as high as 117% for CO/FeGyNR and 300% for NO2/NiGyNR. Due to mutual differences in binding energies and sensitivity among the gases, NiGyNR and FeGyNR also present high selectivity to distinguish the target molecules. Finally, our findings suggest that TM functionalization of graphynes is a promising strategy for engineering the sensitivity of gas nanosensors.},
keywords = {DFT, Electronic transport, Gas sensor, Graphyne, Transition metal},
pubstate = {published},
tppubtype = {article}
}
@article{PORTUGAL2023102486,
title = {Composition-dependent photocatalytic activity and high-mobility carrier gas in NaTaO3/BaBiO3 heterojunctions},
author = {Guilherme Ribeiro Portugal and Rodrigo Mantovani Ronchi and Sydney Ferreira Santos and Jeverson Teodoro Arantes},
url = {https://www.sciencedirect.com/science/article/pii/S2468023022007453},
doi = {https://doi.org/10.1016/j.surfin.2022.102486},
issn = {2468-0230},
year = {2023},
date = {2023-01-01},
journal = {Surfaces and Interfaces},
volume = {36},
pages = {102486},
abstract = {Perovskite oxide heterostructures have been extensively investigated for their excellent nanoelectronics and photocatalytic properties. Herein, the general features of monoclinic (001) NaTaO3/BaBiO3 heterojunctions are theoretically investigated, exploring how the interface creation affects their physicochemical properties. Density functional theory results reveal that a superlattice with 24 wt.% of BaBiO3 displays a typically desired electronic structure for photocatalytic reactions, with an intermediate band gap and highly dispersive energy levels. Hybrid functional calculations provide a band gap of 1.85 eV, with optical absorption peaks inside the visible light spectrum and band-edge potentials better aligned with water splitting levels when compared with the pristine NaTaO3 phase. Upon increasing the number of BaBiO3 layers a semiconductor-to-metal transition is observed and described based on electrostatic and polarization arguments, leading to the formation of a high-mobility two-dimensional electron gas (2DEG) at the interface. The presented results highlight the importance of such nanojunctions not only for photocatalytic but also for nanoelectronics applications.},
keywords = {BaBiO, DFT, Heterojunction, Interface, NaTaO, Perovskite},
pubstate = {published},
tppubtype = {article}
}
@article{SILVEIRA2023122570,
title = {A comprehensive study of the reduction of nitrate on natural FeTiO3: Photocatalysis and DFT calculations},
author = {Jefferson E. Silveira and Aramille S. Souza and Fernando N. N. Pansini and Alyson R. Ribeiro and Wanderlã L. Scopel and Juan A. Zazo and Jose A. Casas and Wendel S. Paz},
url = {https://www.sciencedirect.com/science/article/pii/S1383586622021268},
doi = {https://doi.org/10.1016/j.seppur.2022.122570},
issn = {1383-5866},
year = {2023},
date = {2023-01-01},
journal = {Separation and Purification Technology},
volume = {306},
pages = {122570},
abstract = {Experimental and theoretical investigation of the capacity of the natural ilmenite (FeTiO3) to reduce nitrate (NO3−) from ultra-pure and mineral water is presented. A comprehensive mechanism of NO3− photocatalytic transformation is proposed regarding the density functional theory (DFT) calculations and the photocatalytic reduction of nitrate. When ultra-pure water is employed, the nitrate is totally converted to NOX (2%) and N2 (98%) after 210 min. Additionally, using the stoichiometric dose of oxalate, the nitrate also vanishes from the mineral water, forming NO2−, NOX, and N2 as products. Thus, the findings reveal that natural ilmenite can be a great candidate for reducing NO3− in contaminated water.},
keywords = {DFT, Ilmenite, Nitrate, Photoreduction},
pubstate = {published},
tppubtype = {article}
}
@article{AMBROZIO2023100091,
title = {Combined experimental and computational 1H NMR study of water adsorption onto graphenic materials},
author = {Alan R. Ambrozio and Thierry R. Lopes and Daniel F. Cipriano and Fábio A. L. Souza and Wanderlã L. Scopel and Jair C. C. Freitas},
url = {https://www.sciencedirect.com/science/article/pii/S2666441022000619},
doi = {https://doi.org/10.1016/j.jmro.2022.100091},
issn = {2666-4410},
year = {2023},
date = {2023-01-01},
journal = {Journal of Magnetic Resonance Open},
volume = {14-15},
pages = {100091},
abstract = {The effects caused by the interaction with graphene-like layers on the 1H NMR spectra of water molecules adsorbed onto porous carbon materials were investigated by a combination of shielding calculations using density functional theory (DFT) and 1H NMR experiments. Experimental 1H NMR spectra were recorded for different water-containing carbon materials (activated carbons and milled graphite samples); the 1H NMR signals due to adsorbed water in these materials showed a strong shielding effect caused by the electron currents present in the graphene-like layers. This effect was enhanced for activated carbons prepared at high heat treatment temperatures and for milled graphite samples with short milling times, evidencing that the structural organization of the graphene-like layers was the key feature defining the magnitude of the shielding on the 1H nuclei in the water molecules adsorbed by the analyzed materials. The DFT calculations of the shielding sensed by these 1H nuclei showed an increased interaction with the graphitic layers as the distance between these layers (representing the pore size) was reduced. A continuous decrease of the 1H NMR chemical shift was then predicted for pores of smaller sizes, in good agreement with the experimental findings. These calculations also showed a large dispersion of chemical shifts for the several 1H nuclei in the water clusters, attributed to intermolecular interactions and to shielding variations within the pores. This dispersion, combined with the effects due to the locally anisotropic diamagnetic susceptibility of graphite-like crystallites, are the main contributions to the broadening of the 1H NMR signals associated with water adsorbed onto porous carbon materials.},
keywords = {DFT, Graphenic materials, H NMR, Water adsorption},
pubstate = {published},
tppubtype = {article}
}